Amrita VISHWA VIDYAPEETHAM

(University established u/s 3 of UGC Act 1956)

Amrita Entrance Examination – Engineering

PHYSICS, CHEMISTRY & MATHEMATICS

	<i>'</i>				
Question booklet Version Code	Question book	tlet no.		Time	: 3 hrs
Number of pages	Number of que	estions	120	Max. Marks	: 360
Registration number					
Name of the candidate					
Signature of the candida	te				

INSTRUCTIONS TO THE CANDIDATES

GENERAL

- 1. Any malpractice or attempt to commit malpractice in the examination hall will lead to disqualification of the candidate.
- 2. Candidates are not allowed to carry any textual material, printed or written bits of papers, Mathematical and Physical Tables, electronic gadgets like calculator, cell phone, etc. into the examination hall.
- 3. Candidates shall possess the University Hall Ticket which should be produced on demand.
- 4. Candidates shall occupy the respective seats bearing their registration numbers on time.
- 5. Candidates shall sign the attendance sheet available with the invigilator.
- 6. Candidates are not permitted to leave the hall before the end of the examination.
- 7. Candidates are required to handover the ANSWER SHEET and the QUESTION BOOKLET to the invigilator before leaving the hall.
- 8. After submitting the answer sheet, candidates shall affix their left thumb impression on the attendance sheet.

QUESTION BOOKLET

- 9. DO NOT OPEN THE SEALED QUESTION BOOKLET UNTIL THE INVIGILATOR ANNOUNCES TO DO SO.
- 10. **Before opening the Question Booklet,** write the Registration Number, Name and Signature using ball pen in the space provided at the top of this page.
- 11. **Immediately after opening the booklet,** the candidate should examine whether it contains all the 120 questions in serial order and ---- pages as mentioned at the top of this page. In case of unprinted, torn or missing pages in the booklet, the matter should be reported to the invigilator immediately.
- 12. Rough work may be done on the space provided in this booklet.

(Continued on the last page of this question booklet)

Rough Work	

ı

MODEL QUESTIONS

PHYSICS (S.No.1 to 35) 35 Questions

Ch	ta: celeration due to gravity = arge of electron = 1.6 x 10 V = 1.6 x 10 ⁻¹⁹ J					
1.	Which of the following has $A^2s^4kg^{-1}m^{-2}$	=	of farad? c) kg m ² A ⁻¹ s ²	d) kg m^3 $A^{-2}s^2$		
2.	. Choose the correct combination of the planet and its average orbital speed(in km s ⁻¹) a) Earth (29.8); Saturn(9.65); Venus(35.0); Mars(24.2) b) Earth (9.65); Saturn(29.8); Venus(35.0); Mars(24.2) c) Earth (24.2); Saturn(9.65); Venus(35.0); Mars(29.8) d) Earth (29.8); Saturn(9.65); Venus(24.2); Mars(35.0)					
3.	3. At a point 3200 km vertically above the surface of the earth, acceleration due to gravity of earth in SI units is					
	a) 6.66	b) 3.33	c) 5.55	d) 4.44		
4.	Two laser beams one of photons. Their powers ar a) 64:40		nd the other 400 nm ha	eve same unit flux of d) 25:64		
_	,	,	,	5, =5.5.		
5.	The relation, Work Done a) isothermal process c) isobaric process	= Change in internal 6	b) adiabatic process d) isochoric process			
6.	The rate of flow of volume length L due to pressure used and ΔP is doubled to a) 2	difference ΔP is $(\Delta V/$	(Δt) . If a pipe of radius			
_		,	,	,		
7.	If the charge Q in a capac	citor is doubled, electri				
	a) doublesc) remains unchanged		b) increases by factor d) increases by factor			
8.	A capacitor with C =0.14 of 1.0 Ω . What is the tim	, ,		_		
	a) 10^{-7} s	b) 0.144 x10 ⁻⁶ s	c) 2.1 x 10 ⁻⁷ s	d) 0.144 x 10 ⁻⁷ s		
R	ough Work					

9.	A slab having dielectric c $E = 10 \text{ V m}^{-1}$. The electric			nstant electric field		
	a) 1.1 V m ⁻¹	b) 30 V m ⁻¹	c) zero	d) 3.33V m ⁻¹		
10.	A parallel plate capacitor such that it accumulates the plates is increased a) both electric field inside the c) electric field inside the d) both electric field inside the	charge Q. While being the capacitor and Q e capacitor decreases as a capacitor increases are	decrease and Q increases and Q decreases	_		
11.	The sides (in meters) $\mathbf{a} = 4\mathbf{i}$, $\mathbf{b} = 2\mathbf{i} + 3\mathbf{j}$ and $\mathbf{c} = \mathbf{i}$			sented by vectors		
	a) 20 m ²	b) 26 m ²	c) 36 m2	d) 40 m^2		
12.	2. The slant side of a frictionless incline making an angle 60° with the vertical is 1 m. Starting from rest the time taken by a mass to slide down the incline from top to the base is					
	a) 0.63 s	b) 0.23 s	c) 0.2 s	d) 0.4 s		
13.	A mass of 0.01 kg is hu spring constants k_1 = 10 system is					
	a) 3 cm	b) 1.5 cm	c) 6 cm	d) 2.5 cm		
14.	A mass $m = 1$ kg located in the y direction. All nur		-			
	a) 0.24 radians s ⁻² along a c) 0.12 radians s ⁻² along a					
15.	A circuit is operated by flowing in the circuit is (internal resistance is	•				
	a) 1.8 W	b) 1.74 W	c) 1.42 W	d) 1.62 W		
16.	A small magnet of magn net magnetic flux emergi a) proportional to m b) proportional to the pro c) zero d) a function of location a	ng out of the sphere is oduct R^2 and magnitude	de of m	nere of radius R; the		
Roi	ıgh Work					

~, -	b) 4	c) 6	d) √ 5 6
		plane wave is along	unit vector $n = i + j$. The
, .		b) parallel to <i>n</i> d) parallel to <u>r</u>	
corresponding wave a) parallel to z axis c) perpendicular to z 19. Electric potential in field magnitude at a galaxy and a galaxy prism deviation is 30°. The a) 45° 21. Choose the group of (i) The ammeter use (ii) An ammeter sho (iii) An ammeter sho (iii) An ammeter sho (iv) Connecting ammeter before. a) (i) and (ii) 22. Let E _i , N _i , I _i with i= the primary and secondal E ₁ /E ₂ = N ₁ /N ₂ = I c) E ₂ /E ₁ = N ₁ /N ₂ = I 23. Which of the following a) Fermat's principle b) Huygen's principle c) Law of gravitation d) Alpha decay and a galaxy and a galaxy and a galaxy and a galaxy are galaxy.		$y 4x^2 + 3$. All numbers a	are in SI units. The Electric
a) 40	b) 20	c) 80	d) 10
	ism of refracting angle of The critical angle of gla		quid, its angle of minimum iquid medium is
a) 45°	b) 30°	c) 60°	d) 55°
(iv) Connecting before.			nge in the current present d) (iv) and (i)
22. Let E_i , $N_{i,i}$ I_i with	, , , , , , , , , , , , , , , , , , , ,	vely the emf, number of	of turns, and the current in
	_	b) $E_1/E_2 = N_2/2$	
,	$2 - I_1/I_2$	d) $E_1/E_2 = N_1/2$	$N_2 = I_2/I_1$
c) $E_2/E_1 = N_1/N_2$. 1 2	$d) E_1/E_2 = N_1/$	$N_2 = I_2/I_1$
c) $E_2/E_1 = N_1/N_2$ 23. Which of the foll a) Fermat's princ b) Huygen's princ c) Law of gravita	lowing are unrelated? ciple and propagation of a ciple and speed of light ation and Kepler's laws	f light t	$N_2 = I_2/I_1$
c) $E_2/E_1 = N_1/N_2$ 23. Which of the foll a) Fermat's princ b) Huygen's princ c) Law of gravita d) Alpha decay a	lowing are unrelated? ciple and propagation of a ciple and speed of light ation and Kepler's laws and Coulomb force	f light t p k is placed at the orig	

	a) Both A and B form reab) Both A and B form virc) A forms real image andd) A forms virtual image	rtual images. d B forms virtual imag		
26.	Assume that the wave le 600 nm. Its frequency is	ength of yellow light	in crown glass of ref	Fractive index 1.5 is
	a) $0.5 \times 10^{15} \text{ Hz}$	b) $0.33 \times 10^{15} \text{ Hz}$	c) $1.5 \times 10^{15} \text{ Hz}$	d) $0.5 \times 10^{15} \text{ Hz}$
27.	The energies of two phomenta is	notons are in the rat	io 1:4. The correspon	nding ratio of their
	a) 1:2	b) 1:4	c) 2:1	d) 4:1
28.	At a given kinetic energy	which of the following	g has the highest speed	1?
	a) neutrino	b) electron	c) muon	d) photon
29.	The time taken by light to order of	o travel over a length	equal to the radius of r	nucleus ⁶⁴ Ni is of the
	a) 10^{-21} s	b) 10^{-23} s	c) 10^{-25} s	d) 10^{-19} s
30.	Water in a porcelain con of the water rises, but thea) porcelain is a bad concb) water is a liquid and ca conductor.c) preferential absorptiond) microwaves are more	container temperature ductor of heat. an set up convection c	e does not rise much. Turrents but the containe tain frequencies by wa	This is because er is solid non
Roi	ıgh Work			IN COMPLETE

25. A compound telescope have two lenses A and B. Lens A is closer to object than lens B.

Which statement is correct?

CHEMISTRY (S.No. 36 to 70) 35 Questions

36.	5. 20 g of a solute whose density is 2.0 g/cc is dissolved in water and the solution is made upto one litre. If the molecular weight of the solute is 100, what is the molality of the solution?				
	a) 0.2020	b) 0.4040	c) 0.2000	d) 0.0200	
37.	The velocity of infra red	radiation in vacuum co	ompared to ultra violet	is	
	a) twice	b) half	c) equal	d) four times	
38.	Which one of the following a) An orbit and orbital material b) An orbit and orbital control of the energies of the ordinal control of the maximum number.	ean the same thing. ontain the same number oit and the orbital are the	he same.	al will be different.	
39.	Which one of the folloprinciple?	lowing has electronic	c configuration in vi	iolation of Aufbau	
	a) calcium	b) titanium	c) chromium	d) manganese	
40.	 a) A matchstick on strike burns. b) Camphor packed in a container without over space catches fire on its own. c) Petrol kept in an open beaker reduces in quantity slowly. d) Water in a beaker surrounded by ice and salt freezes. 				
41.	at the same temperature i	5° C. The value of the \rightarrow $2A^{+} + B^{2-}$	stant is $5x10^{-5}$ and the equilibrium constant c) $4x10^{-4}$	second dissociation t for the following d) 5×10^{-14}	
	,	,	,	d) 3 x 10	
42.	In ice-liquid water equilib				
	a) increase in melting poc) no change in melting p		b) decrease in melting d) disappearance of o	_	
43.	A silver rod dipped in a potential of 0.75 V vs st 0.8V, at what molar conc	andard hydrogen electron entration of the solution	rode. If the standard pon the potential will be	otential for silver is come zero?	
	a) 2.76 x 10 ⁻¹⁴	b) 2.76 x 10 ¹⁴	c) 7.6×10^{-28}	d) 7.6 x 10 ²⁸	
Ro	ough Work				

44.	What is the theoretical qu Exchange Membrane Fue a) 1.0 g		n required to generate 53.6 c) 2.0 g	6Ah in a Proton d) 2.0 litre		
	<i>a)</i> 1.0 g	0) 1.0 kg	c) 2.0 g	d) 2.0 Huc		
45.	*		hat of Y and Z constant. T	he rate of the		
	a) 2	b) 4	c) 1	d) 0		
46.	Which one of the followi	ng exhibits Schott	ky defect?			
	a) nickel oxide	C	b) potassium bromid	e		
	c) ferrous sulphide		d) silver chloride			
17	7. Which one of the following is anti ferromagnetic?					
47.		ng is and terromas				
	a) titanium dioxide		b) nickeld) ferrous oxide			
	c) oxygen		u) lellous oxide			
48.	The gas that is produced	through catalytic r	eforming of sewage is			
	a) producer gas		b) syngas			
	c) natural gas		d) carbon monoxide			
49.	Which one of the followi	ng hydrides is non	-stoichiometric?			
	a) ammonia	b) nickel hydride		d) diborane		
	,	•	•	,		
50.			n of the following fuels pe	r litre is		
	a) LPG > octane > liqu					
	b) liquid hydrogen > gas					
	c) octane > LPG > liqu d) gaseous hydrogen > l					
	u) gascous frydrogen > 1	iquiu nyurogen >	octane > Er o			
51.	Density of the following	alkali metals is in	the order of			
	a) lithium < sodium	< potassium				
		m < sodium	< lithium			
	, I	m < lithium	< rubidium			
	d) lithium < potassiu	m < sodium	< rubidium			
52.		zation enthalpy val	lues of group 13 elements	in the periodic table		
	is due to					
	a) irregular variation in io					
	b) irregular variation in e		cong			
	c) poor shielding effect od) poor shielding effect o					
_	- 1 Poor sinclume criect of	i d diid i ciccli	0115			

53.	The reduction of g	germanium tetrachloride with	lithium aluminium hyd	lride gives
	a) digermanec) monogermane		b) di and tri germanes d) mixture of all germ	
54.		following is used as cathode in	-	ery?
	a) liquid sulphur oc) poly ethylene o		b) thionyl chlorided) methyl cyanide	
55.	~ -	nerism is possible in pentaamn		
	a) linkage	b) optical	c) position	d) ionisation
56.	A coordination co is the type of hybr	-	•	
	a) dsp^2	b) sp ³	c) sp^3d	d) d^2sp^3
57.	pressure and 27°	nic compound gave 60 mL of °C. Aqueous tension at 27° trogen in the compound? b) 2.125		
58.	distillation in pres a) acetic anhydrid	ucts formed on passing ace sence of mercuric sulphate. e and acetone dride and methanol	tylene through acetic b) acetic anhydride ar d) acetic anhydride ar	nd ethanol
59.	a) alkyl fluorideb) alkyl fluoridec) alkyl iodide	ivity of the following for an S > alkyl chloride > alkyl be > alkyl bromide > alkyl cl > alkyl bromide > alkyl cl > alkyl fluoride > alkyl ic	romide > alkyl iodi hloride > alkyl iodi hloride > alkyl fluc	de oride
60.	acid at 170°C to		sis, followed by hydr	olysis with lithium set of products from nol

IN COMPLETE

MATHEMATICS (S.No. 71 to 120) 50 Questions

71. Let $z_1 = 10 + 6i$ $z - z_1 = \pi$	and $z_2 = 4 + 6i$. I	f z is any complex numb	er such that the arg	ument
	, then $ z - 7 - 9i _{is}$	equal to		
(a) 6	(b) 3√2	(c) 2√3	(d) √6	
72. The complex nun	nbers z_1 and z_2	are such that $Z_1 \neq Z_2$ an	$d z_1 = z_2 . \text{ If } z$	1 has
positive real part	and Z ₂ has neg	ative imaginary part, the	$\begin{array}{ccc} & \frac{z_1 + z_2}{z_1 - z_2} & \text{m} \\ d \ negative \end{array}$	nay be
(c) purely imag	inary	(d) real and	positive	
73. The maximum val	ue of $ z $ where \sqrt{z}	' satisfies the condition	$\left z + \frac{2}{z} \right = 2$ is $(d) \sqrt{3} + \sqrt{3}$	-
				2
74. If ' ω ' is a non re	eal cube root of unity,	then $(a + b)(a + b\omega)(a + b\omega)$	⊦ bω²) is	
(a) $a^2 - b^2$	(b) $a^2 + b^2$	(c) $a^3 - b^3$	(d) $a^2 + b^2$	2
75. If $a^2 + b^2 + c^2 = 1$	1, then, $bc + ca + a$	b lies in the interval		
(a) $\left[-\frac{1}{2}, 1\right]$	(b) $\left[-\frac{1}{2},\right]$	3] (c) [-1,	2] ((d) [-1,
		es which can be formed by $r_n = 10$, then the value of		es of a
(a) 5	(b) 4	(c) 6	(d) 7	
77. If $(2n+1)P_{n-1}$:	$(2n-1)P_n=3:5$	hen the value of n is		
(a) 3	(b) 6	(c) 4	(d) 8	
	10 ^x - :			
78. The inverse of the				
(a) log_{10} (2 – x)		(b) $\frac{1}{2} log_{10} \left(\frac{1}{2} log_{10} \right)$	$\left(\frac{1+x}{1-x}\right)$	
(c) $\frac{1}{2} \log_{10}(2x - 1)$	1)	(d) $\frac{1}{2} log_{10} \left(\frac{1}{2} \right)$	$\frac{2x}{-x}$	
Rough Work				

				7		
79. The sum of the first n	terms of the series	2 +	4	8+	16 +	 is

- (a) $2^n 1$
- (b) $1 2^{-n}$ (c) $2^{-n} n + 1$
- (d) $2^{-n} + n 1$
- 80. If $\mathbf{5}^{1+x} + \mathbf{5}^{1-x}$, $\frac{a}{2}$ and $2\mathbf{5}^x + 2\mathbf{5}^{-x}$ are three consecutive terms of an A.P., then the values of 'a ' are given by
 - (a) $a \ge 12$
- (b) a > 12
- (c) a < 12
- (d) $a \leq 12$

81. If
$$a$$
, b , c are in H.P., then the value of $\frac{b+a}{b-a} + \frac{b+c}{b-c}$ is

(a) 0

(b) 1

(c) 2

(d) 3

82. Let
$$\begin{vmatrix} a & b & c \\ b & c & a \\ c & a & b \end{vmatrix} = \Delta$$
, where a , b , c are positive. Then

- (a) $\Delta > 0$
- (b) ∆≥ 0
- (c) $\Delta \leq 0$
- (d) $\Delta < 0$

83. If
$$\begin{bmatrix} 1 & x & 1 \end{bmatrix} \begin{bmatrix} 1 & 2 & 3 \\ 0 & 4 & 5 \\ 0 & 6 & 7 \end{bmatrix} \begin{bmatrix} x \\ 1 \\ -2 \end{bmatrix} = 0$$
, then the value of x is

 $(a) - \frac{1}{2}$

- $(b)^{\frac{1}{2}}$
- $(c)^{\frac{12}{5}}$

(d) $-\frac{12}{e}$

84. The quadratic expression
$$17 + 12x - 4x^2$$
 takes

(a) the least value 6

(b) the highest value 26

(c) the highest value 17

- (d) the lowest value 17
- 85. Three vectors \overline{A} , \overline{B} and \overline{C} are given by $\hat{\imath} + \hat{k}$, $\hat{\imath} + \hat{\jmath} + \hat{k}$ and $3\hat{\imath} 2\hat{\jmath} + 5\hat{k}$ respectively. Then the vector \overline{R} which satisfies the relation $\overline{R} \times \overline{B} = \overline{C} \times \overline{B}$ and $\overline{R} \cdot \overline{A} = \mathbf{0}$ is
 - (a) $-\hat{\imath} 6\hat{\imath} + \hat{k}$

(b) $\hat{\imath} + 6\hat{\jmath} - \hat{k}$

(c) $2\hat{i} - 3\hat{j} + \hat{k}$

 $(d) - \hat{\imath} + 6\hat{\jmath} - \hat{k}$

86. If the magnitude of monthrough the point $\hat{i} + \hat{j}$ is			$\hat{\imath} + \alpha \hat{\jmath} - \hat{k}$ acting		
(a) 9	(b) 4	(c) ± 2	(d) ± 3		
87. The arithmetic mean of n odd natural numbers is					
(a) n	(b) $\frac{n(n+1)}{2}$	(c) $n-1$	(d) n ²		
88. A car completes the first half of its journey with a velocity v_1 and the remaining half with velocity v_2 . The average velocity of the car for the whole journey is					
(a) $\sqrt{v_1v_2}$	$(b) \frac{v_1 - v_2}{2}$	$(c) \frac{v_1 + v_2}{2}$	(d) $\frac{2v_1v_2}{v_1 + v_2}$		
89. An integer $\frac{x}{x}$ is chosen at random from the numbers $\frac{1}{x}$ to $\frac{28}{x}$. The probability that $\frac{192}{x} \le 30$ is					
(a) $\frac{7}{10}$	(b) $\frac{1}{15}$	(c) $\frac{2}{28}$	(d) $\frac{5}{28}$		
90. Let x be a nonzero real number. A determinant is chosen from the set of all determinants of order two with entries x and x only. The probability that the value of the determinant is nonzero is					
(a) $\frac{1}{4}$	(b) $\frac{1}{2}$	(c) $\frac{3}{16}$	(d) $\frac{1}{8}$		
91. Two candidates A and B are seeking admission in AMRITA UNIVERSITY. The probability that A is selected is 0.5 and the probability that both A and B are selected is atmost 0.25 . Then the probability of B getting selected cannot exceed					
(a) 0.75	(b) 0.7	(c) 0.8	(d) 0.6		
92. The curve satisfying the d the point (1, -1) is	Sifferential equation $\frac{dy}{dx} =$	$= \frac{y^2 - 2xy - x^2}{y^2 + 2xy - x^2}$ and	nd passing through		
(a) a circle		(b) a straight lin	ne		
(c) an ellipse		(d) a parabola			
Rough Work					

93. The solution of the differential equation	$\frac{\log dy}{dx} = 9x - 6y + 6$, given y =	= 1	when
x = 0 is		, 0		

(a)
$$3e^{6y} = 2e^{9x-6} + 6e^x$$
 (b) $3e^{6y} = 2e^{9x+6} - 6e^6$

(c)
$$3e^{6y} = 2e^{9x+6} + e^6$$
 (d) $e^{6y} = 2e^{9x-6} + e^{-6}$

94.
$$\sqrt{2 + \sqrt{2 + 2\cos 8\theta}}$$
 is equal to
(a) $2\cos 4\theta$ (b) $2\cos 2\theta$ (c) $2\cos \theta$ (d) $\cos 2\theta$

95. The value of
$$\lim_{|x|\to\infty} \left[\cos\left(\tan^{-1}\right)\left(\sin\left(\tan^{-1}x\right)\right)\right)$$
 is equal to

(a) -1 (b)
$$\sqrt{2}$$
 (c) $-\frac{1}{\sqrt{2}}$ (d) $\frac{1}{\sqrt{2}}$

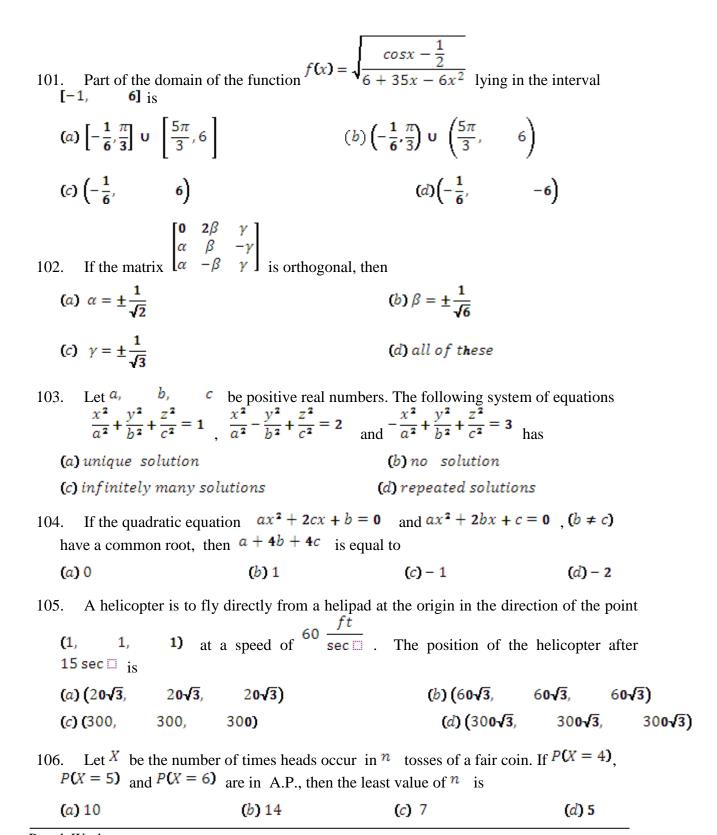
96. If the orthocentre H of a triangle ABC bisects the altitude AD of the triangle ABC, then the value of tanBtanC is

97. The remainder got by dividing 2^{804} by 257 is

98. If
$$\lim_{x \to 0} f(x) = \frac{1}{2}$$
 and $\lim_{x \to 0} g(x) = 4$, then $\lim_{x \to 0} \frac{f(x)\cos x}{e^x \sqrt{g(x)}}$ is

(a) 0 (b) -1 (c) 1 (d) 2

99. If f(x) and g(x) are two functions such that f(2) = 3, g(2) = -4, $f'(2) = -\frac{1}{2}$ and $g'(2) = -\frac{8}{3}$, then the derivative of $\log_{\mathfrak{g}}[f(x)g(x) + x]$ at x = 2 is


(a)
$$\frac{1}{3}$$
 (b) $\frac{1}{2}$ (c) $-\frac{1}{3}$ (d) $-\frac{1}{2}$

100. If p(x) is a

polynomial of degree three which attains its maximum value 60 at x = -3 and minimum value -84 at x = 3, then the polynomial is

(a)
$$\frac{x^2}{3} - 9x - 12$$
 (b) $x^2 - 9x - 12$

(c)
$$4\left(\frac{x^3}{3} - 9x\right) - 12$$
 (d) $4\left(\frac{x^3}{3} - 9x\right) + 12$

(a)
$$y = \frac{\varphi(x) + C}{x}$$

(c)
$$y = \varphi(x) + x + C$$

$$\frac{dy}{dx} = \frac{y\varphi(\square'(x) - y^2)}{\varphi(x)}$$
 is

(b)
$$y = \frac{\varphi(x)}{x + C}$$

(d)
$$y = \frac{\varphi(x)}{x} + C$$

108. The solution of the differential equation
$$\frac{dy}{dx} = \sin(x + y) + \cos(x + y)$$
 is

(a)
$$\log \left| 1 - \tan \left(\frac{x + y}{2} \right) \right| = y + C$$

(c)
$$\log \left| 1 + \tan \left(\frac{x + y}{2} \right) \right| = y + C$$

(b)
$$\log \left| 1 + \tan \left(\frac{x + y}{2} \right) \right| = x + C$$

(d)
$$log|1 + tan(x + y)| = x + C$$

109. The equation
$$sin^4x + cos^4x + sin2x + \beta = 0$$
 is solvable for

$$(\alpha) - \frac{5}{2} \le \beta \le \frac{1}{2}$$

(b)
$$-3 \le \beta < 1$$

$$(c) -\frac{3}{2} \le \beta \le \frac{1}{2}$$

(d)
$$-1 \le \beta \le 1$$

110. Given that
$$x = x(t)$$
 and $y = y(t)$ satisfy the equations $x + 2x^{\frac{3}{2}} = t^2 + t$ and $y\sqrt{1+t} + 2t\sqrt{y} = 4$, then $\frac{dy}{dx}$ at $t = 0$ is

$$(a) - 6$$

(b)
$$-4$$

- 111. Two ships are steaming away from a point 'O' along routes that make an angle of 120°. Ship A moves at 14 knots and ship B at 21 knots. The ships are moving apart at a rate of \Box 'a knots' when OA = 5 nautical miles and OB = 3 nautical miles, where a is
 - (a) 29.5
- (b) 28.5
- (c)29
- (d)28

112. If
$$U_n = \int_0^1 x^n t a n^{-1} x dx$$
, then the value of $(n+1)U_n + (n-1)U_{n-2}$ is

$$(a)\frac{\pi}{4} - \frac{1}{n}$$

$$(b)^{\frac{\pi}{4}} + \frac{1}{n}$$

(c)
$$\frac{\pi}{2} - \frac{1}{n}$$

(a)
$$\frac{\pi}{4} - \frac{1}{n}$$
 (b) $\frac{\pi}{4} + \frac{1}{n}$ (c) $\frac{\pi}{2} - \frac{1}{n}$ (d) $\frac{\pi}{2} + \frac{1}{n}$

113. The value of
$$\int_{1}^{5} 2^{\sqrt{x-1}} dx$$
 is

(a) $\frac{16}{(\log 2)^{2}} - \frac{8}{\log 2}$ (b) $\frac{8}{\log 2} + \frac{16}{(\log 2)^{2}}$

(c) $\frac{8}{\log 2} - \frac{4}{(\log 2)^{2}}$ (d) $\frac{16}{\log 2} - \frac{8}{(\log 2)^{2}}$

114. The pair of tangents drawn from the point $P = (h, -k)$ to the two circles $x^{2} + y^{2} + 2x = 0$ and $x^{2} + y^{2} - 6x = 0$ coincide. Then the point P is

(a) $(-3, -2)$ (b) $(-3, 0)$ (c) $(3, 0)$ (d)

115. Two circles pass through $(0, \pm a)$ and touch the straight line $x - 2y - 4 = 0$. If the two circles are orthogonal, then the value of a is

(a) $\frac{3}{4}$ (b) $\frac{\sqrt{3}}{4}$ (c) $\frac{4}{3}$ (d) $\frac{3}{2}$

116. A force $\overline{F} = 3f + f - 2k$ is applied to a spacecraft with velocity $\overline{v} = f - 2f$. Then the force F expressed as a vector which is both parallel and orthogonal to \overline{v} is

(a) $\frac{1}{5}(14f + 7f - 2k)$

 $(c)\frac{14\hat{i}}{5} + \frac{7\hat{j}}{5} - 2\hat{k} + \frac{\hat{i} - 2\hat{j}}{5}$ (d) $\frac{1}{5}(14\hat{i}+7\hat{j}-2\hat{k})+\hat{i}-2\hat{j}$ 117. If x + 4y - 14 = 0 is the normal to the curve $y^2 = px^2 + q$ at the point (2, y)3) then the pair 🕼

7}

 $(a) \{2,$ **7**} (b) $\{-2,$

 $(c) \{3,$

8}

(d) $\{2, -7\}$

0)

(d) $\frac{3}{2}$

(d) (3, -2)

118. The value of the integral

 $\int \frac{\log(x+1) - \log x}{x(x+1)} dx$

(a) $\frac{1}{5} (14\hat{\imath} + 7\hat{\jmath} - 2\hat{k})$

(a) $C - \frac{1}{2} \left(\log \left(1 + \frac{1}{x} \right)^2 \right)$ (b) $\log\left(\frac{x+1}{x}\right) + C$

 $(c) - \frac{1}{2} \left(\log \left(x - \frac{1}{x} \right) \right)^2 + C$ (d) $2 \log \left(x + \frac{1}{x} \right) + C$

119. If $\int \frac{x^2+2}{(x^2+1)(x^2+4)} dx = p \tan \Box^{-1} \left(\frac{qx}{r+x^2}\right) + C$, then the values of p, q and r are respectively

(a)
$$\left\{\frac{1}{3}, -3, -2\right\}$$

(c) $\left\{-3, -\frac{2,1}{3}\right\}$

(b)
$$\left\{-\frac{1}{3}, 3, 2\right\}$$

(d) $\left\{\frac{1}{3}, 3, 2\right\}$

120. The area enclosed between the two parabolas $y = 7 - 2x^2$ and $y = x^2 + 4$ is

- (a) 3
- (b) 4
- (c) 2
- (d)5

(Continued from the first page)

OMR ANSWER SHEET

- 1. Use the OMR answer sheet carefully; no spare sheet will be issued under any circumstance.
- 2. Do not fold or make any stray mark on the OMR sheet.
- Use HB Pencil or Blue / Black ball point pen for shading the bubbles and black ball pen for writing.
- 4. In the OMR answer sheet, make the following entries
 - a. Write the Registration number, Question Booklet Number and Question Booklet Version code.
 - b. Fill the ovals corresponding to the Registration Number, Question Booklet Number and Question Booklet Version Code.
 - c. Write your Name and Signature.
- 5. Rough work should not be done on the answer sheet.

ANSWERING AND EVALUATION

- 6. For each question, four answers are suggested of which only one is correct / most appropriate. Mark the correct / most appropriate answer by darkening the corresponding bubble using HB pencil or Blue / Black ball point pen.
- 7. In case the candidate wishes to change the choice already shaded using HB pencil, he/she may erase the marking completely and thereafter shade the alternative bubble.
- 8. If more than one bubble is darkened against a question, it will be treated as an incorrect answer.
- 9. For each correct answer, three marks will be awarded.
- 10. For each incorrect answer, one mark will be deducted from the total score.
- 11. If any smudge is left on the OMR sheet, evaluation will become imperfect.